skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gray, Gavin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Compiler diagnostics for type inference failures are notoriously bad, and type classes only make the problem worse. By introducing a complex search process during inference, type classes can lead to wholly inscrutable or useless errors. We describe a system, Argus, for interactively visualizing type class inferences to help programmers debug inference failures, applied specifically to Rust’s trait system. The core insight of Argus is to avoid the traditional model of compiler diagnostics as one-size-fits-all, instead providing the programmer with different views on the search tree corresponding to different debugging goals. Argus carefully uses defaults to improve debugging productivity, including interface design (e.g., not showing full paths of types by default) and heuristics (e.g., sorting obligations based on the expected complexity of fixing them). We evaluated Argus in a user study whereN= 25 participants debugged type inference failures in realistic Rust programs, finding that participants using Argus correctly localized 2.2× as many faults and localized 3.3× faster compared to not using Argus. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  2. Programmers learning Rust struggle to understand ownership types, Rust’s core mechanism for ensuring memory safety without garbage collection. This paper describes our attempt to systematically design a pedagogy for ownership types. First, we studied Rust developers’ misconceptions of ownership to create the Ownership Inventory, a new instrument for measuring a person’s knowledge of ownership. We found that Rust learners could not connect Rust’s static and dynamic semantics, such as determining why an ill-typed program would (or would not) exhibit undefined behavior. Second, we created a conceptual model of Rust’s semantics that explains borrow checking in terms of flow-sensitive permissions on paths into memory. Third, we implemented a Rust compiler plugin that visualizes programs under the model. Fourth, we integrated the permissions model and visualizations into a broader pedagogy of ownership by writing a new ownership chapter forThe Rust Programming Language, a popular Rust textbook. Fifth, we evaluated an initial deployment of our pedagogy against the original version, using reader responses to the Ownership Inventory as a point of comparison. Thus far, the new pedagogy has improved learner scores on the Ownership Inventory by an average of 9 
    more » « less